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On the basis of a method developed in a previous paper, a systematic rule 
for obtaining a symmetrized collision superoperator of the Van Hove 
generalized master equation including an arbitrary number of particles is 
given. In the formalism, the quantum statistical effect is taken into account 
through the use of contractions (internal and external contractions) on the 
basis of the cluster expansion. As an application of this general rule, a 
symmetrized collision superoperator including the effect of three-particle 
collisions is obtained. 

KEY WORDS: Many-particle collision superoperator; cluster expansion; 
internal and external contractions. 

1. I N T R O D U C T I O N  

This second paper in the present series investigates the effects of multiple 
collisions in the generalized master equation on the basis of a new treatment 
of the quantum statistical effect through the use of contractions, using a 
diagrammatic method given previously (1~ (this work will be cited as I). In I, 
we derived a kinetic equation for a weakly coupled system based on the 
expansion of the collision superoperator (s.operator) in powers of the 
coupling constant A. However, for the case of a strong interaction, divergences 
appear in the A expansion and partial summations of  infinite series must be 
performed to get an expansion in terms of a bounded operator of the binary 
cluster. This problem has been investigated by R6sibois ~2~ and also by 
Swenson. (~ They derived kinetic equations including the effect of three- 
particle collisions for a simple unsymmetrized quantum system. However, 
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due to the complicated structure of the quantum statistical effects in multiple 
collisions, no symmetrized effects were investigated except for the simplest 
case of the two-particle collision by Prigogine and Rdsibois. (~) 

The aim of the present work is to show how our new treatment for the 
quantum statistical effect in I can be used to deal with such complicated 
effects in multiple collisions. With the aid of our diagrammatic method with 
the use of contractions we can separate the quantum statistical effects in 
multiple collisions into an external effect and an internal one. The external 
effect is a degenerating effect between a particle in a collision and a particle in 
the background of this collision, and is indicated by an external contraction 
in our diagrams. The internal effect is a degenerating effect among the 
particles in a collision and is indicated by an internal contraction in our 
diagrams. By virtue of this classification, it becomes possible to separate the 
quantum statistical effects in the essentially multiple collision from the so- 
called Uehling-Uhlenbeck term arising from the statistical effects of the 
background particles. Then, on the basis of this classification and using the 
cluster expansion, we obtain a systematic rule for obtaining the symmetrized 
collision s.operator including an arbitrary number of particles. 

In the next section, starting with the construction of unsymmetrized 
collision s.operators based on the cluster expansion, we give a systematic rule 
for obtaining a symmetrized collision s.operator including an arbitrary 
number of particles. Section 3 is devoted to applications of our general rule 
and there the symmetrized collision s.operators including the effects of two- 
and three-particle collisions are obtained. By using these s.operators, we 
further derive a kinetic equation of a momentum distribution function under 
the condition of an instantaneous collision. In the last section, some implica- 
tions of our results are discussed. 

2. C O N S T R U C T I O N  OF COLLISION S .OPERATOR 

The collision s.operator XE(I) in which we are interested appears in the 
generalized master equation 

is ~po,E(Ip"; t) 
21r ft  . 

= hE(pN; t) + T ~ o  a~- ~ (pN; PNIxE'(~.)lp'N ; p'N)p0,E(lp'N; t -- ~') (2.1) 
D,N 

where 

(pN; pN[xE,(t)[p,N ; p,N) 

= ~ d! pNIXE(I)Ip,N ; p,N) (2.2) 
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The partial distribution function of momenta Oo,z(]pN; t) is related to the 
vacuum component of the Wigner distribution function po(pN; t) for t > 0 as 

~ ' - o 0  

po(Ip~; t) = aEpo,~(Iv~; t) (2.3) 
c o  

In (2.1), the same notations are used as in Ref. 1, Section 3, for the in- 
homogeneous term h~ and for the collision s.operator XE, including the 
quantum statistical effect through the use of contractions. The diagrams 
corresponding to the collision s.operator are shown in Fig. 1, where the first 
part of the right side is the gain part of the collision s.operator and the second 
part is the loss part. 

We now give a rule for constructing the quantum statistical collision 
s.operator based on the cluster expansion of the diagonal fragments ~r and G. 
Our construction is achieved by using the diagrammatic method as follows: 
(i) First, we construct the unsymmetrized one-sided diagonal fragment on the 
basis of the cluster expansion. (ii) Next, by symmetrizing the fragments 
through a contraction, we find the quantum statistical skeleton fragments. 
(iii) Then, with the aid of the compensative relation, we find two-sided 
skeleton fragments. (iv) Finally, by putting external degenerating contrac- 
tions, and by piling up one-sided diagonal fragments on the above skeleton 
fragments as bubbles, and furthermore by attaching inactivated diagonal 
fragments to the two-sided fragment, we obtain the collision s.operator. 

Let us now explain each step in this procedure in detail. 

(i) To construct the unsymmetrized one-sided fragment, we first intro- 
duce a diagrammatic notation for the "one-sided n-particle cluster." This is 
defined by the summation of all diagrams that include n colliding particles 
connected through their interactions and having no intermediate states equal 
to the initial and final states. Examples of clusters are shown in Fig. 2. 

In each cluster, diagrams are classified into two groups, "irreducible 
clusters" and "reducible clusters." The irreducible cluster is defined by the 
summation of all diagrams including neither "bubbles" n o r "  semibubbles" 
in the intermediate state. Here, a semibubble is a part of a diagram corre- 
sponding to a transition between states of the same momentum, but in which 
only the roles of two particles are interchanged. An example of a semibubble 
is shown in Fig. 3a. We need to separate such a semibubble from other 
transitions, because it may reduce to the quantum statistical bubble through a 
contraction. For example, by the contraction between particles 2 and 3 in 
Fig. 3a, the semibubble reduces to a bubble as in Fig. 3b. In Fig. 4, some 
examples of irreducible clusters are shown. 

The reducible clusters are defined by the remaining parts of clusters and 
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I<-- B. ~1 

(a )  (b) 
Fig. 3. (a) Semibubble (S.B.)~ (b) Bubble (B.). 

are always constructed by combining irreducible clusters. The three-particle 
cluster, for example, is constructed from irreducible clusters as shown in 
Fig. 5. 

Independent of the above classification, we need to further classify the 
clusters into two groups: (1) Clusters that yield an external contraction by 
symmetrization through a contraction, and are called the "concave type of 
cluster" or the "concave cluster" according to its topological structure. A 
typical diagram in the concave cluster is shown in Fig. 6a, where, by con- 
traction between 1 and 2, an external contraction is yielded as in Fig. 6b. 
(2) Clusters that yield no external contraction, and are called the "convex type 
of cluster" or the "convex cluster." An example of this type is shown in 
Fig. 6c. 

By performing contractions in the above-classified clusters, the sym- 
metrization of the one-sided diagonal fragments is achieved. 

(ii) We now give a rule for finding a quantum statistical skeleton 
fragment by performing a contraction on an unsymmetrized cluster. The 
simplest symmetrized skeleton fragment is obtained from a convex type of 
irreducible cluster. Indeed, on the performance of a contraction in this 
cluster, there appears neither an external contraction nor a bubble. For 
example, the symmetrization of the three-particle irreducible cluster through 
all possible contractions gives the quantum statistical skeleton fragments 
shown in Fig. 7, where the symmetrization operator defined in (2.10) of I 
is used to represent the summation of the contracting arrows in compact 
form. 

The symmetrization of a concave cluster is more complicated, since some 
of the contractions yield external contractions. To get a skeleton fragment 
without an external contraction, we must subtract the part of the symmetriza- 
tion that yields the external contraction from a simple symmetrization among 
all particles appearing in the duster. This subtraction is not so difficult, 
because if the external contraction is removed after performing this contrac- 
tion, the cluster becomes simpler than the original one. Then, from this 
simpler cluster, we can find which part of the symmetrization must be 
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subtracted. For example, in Fig. 8a the contraction between particles 1 and 2 
in the concave diagram is the external contraction shown in Fig. 8b. 2 By 
removing this contracting arrow, the diagram becomes a simpler convex type 
of three-particle irreducible cluster. Thus, the diagram in Fig. 8b can be 
safely symmetrized without further external contraction as in Fig. 8d. There, 
Q~j is the interchanging operator introduced in Section 2 of I. Then, by 
subtracting the partially symmetrized cluster from the simple symmetrized 
cluster among all particles 1-4, we obtain the quantum skeleton fragment in 
Fig. 8e. 

More complicated concave clusters can be symmetrized by iterative use 
of the subtracting procedure for partially symmetrized clusters similar to this 
simple example. An example of a quantum statistical skeleton fragment 
obtained from a more complicated concave cluster is shown in Fig. 9, where 
the terms from second to fourth are symmetrized clusters with single external 
contraction and the last term is with two external contractions. 

Next, we consider the symmetrization of a reducible cluster. It should 
be noted that in the symmetrization of a cluster having a bubble, there are 
some contractions that cause the bubble to reduce to a nonbubble such as in 
Fig. 10a. Therefore, in constructing the quantum statistical skeleton fragment, 
we cannot omit the reducible cluster from our consideration, even if it has a 
bubble in the unsymmetrized cluster. For  such a case, the quantum statistical 
skeleton fragment can be found by subtracting the quantum statistical 
cluster with a bubble from the simple symmetrized one among all particles 
appearing in the cluster. Therefore, we must first find the part of the sym- 
metrization that yields a quantum statistical cluster with a bubble. As can 
be seen in the example of Fig. 10b, such a symmetrization is attained if the 
symmetrization of the basic skeleton fragment is combined with the partial 
symmetrization of the bubble except for the particle connecting to the basic 
skeleton fragment. The diagram in Fig. 10c is thus the quantum statistical 
skeleton fragment for which we are looking. 

The more complicated quantum statistical skeleton fragment originating 
from the unsymmetrized cluster having more than a single bubble can be 
found by iterative use of the subtracting procedure of quantum statistical 
clusters with bubbles similar to this simple example. An example is shown in 
Fig. 11, where the first parenthesis indicates the symmetrization without 
the external contraction, the second and the third parentheses indicate the 
symmetrization with a single bubble, and the last term indicates the 
symmetrization with two bubbles. 

For the case of the symmetrization of a reducible cluster with a semi- 

In order to avoid ambiguity in the location of the potential lines between particles 3 
and 4 in each cluster in Fig. 8, we take it that the right cluster in each diagram does not 
contain the potential lines between these particles at its leftmost side. 



(a
) 

> 

(b
) 

> 

> 

(c
) 

(d
) 

3 
4!

-~
12

34
 

(e
) 

F
ig

. 
8

. 
S

y
m

m
e

tr
iz

a
ti

o
n

 
o

f 
a 

c
o

n
c

a
v

e
 

c
lu

st
e

r.
 

- 
3 

! @
Ql

 2
..~

i 
3 4

 

> 

> 

O
 .q < ~D
 

~
. 

C
r 

CD
 

Z O
 

".s
 

('O
 

..
~ c=

 

C
 3 e-
 

r 3 3 4=
, 



5!
 "

~1
23

45
 

- 
~ 

) 

-4
!0

Q
13

~1
24

5 
- 

0Q
23

(4
! 

~1
24

5-
3!

0Q
12

 -
~ 

-3
! 

02
QI

 2
QI

 3
,J~

, 14
5 

F
ig

. 
9.

 
E

xa
m

pl
e 

of
 a

 q
u

an
tu

m
 s

ta
ti

st
ic

al
 s

ke
le

to
n 

fr
ag

m
en

t 
o

b
ta

in
ed

 f
ro

m
 a

 c
on

ca
ve

 c
lu

st
er

. 

14
5 

) 

>
 

(a
) 

(b
) 

�9
 

P
4

 v 

(o
) 

F
ig

. 
10

. 
S

ym
m

et
ri

za
ti

on
 o

f 
a 

re
du

ci
bl

e 
cl

us
te

r 
ha

vi
ng

 a
 b

ub
bl

e.
 

234
-2!~

12 
>

 

2~3
1 

>
 

~(
4!

-~
12

34
-3

!~
 

- (3
!~2

34
-2!'~

34
)] 

-(
3~

21
34

-2
~3

4)
 

- 
z~

34
 

F
ig

. 
11

. 
E

xa
m

pl
e 

of
 a

 q
u

an
tu

m
 s

ta
ti

st
ic

al
 s

ke
le

to
n 

fr
ag

m
en

t 
ob

ta
in

ed
 f

ro
m

 a
 r

ed
uc

ib
le

 c
lu

st
er

 h
av

in
g 

bu
bb

le
s.

 



> 1 
M-

1 ) ! 
.~

)M
_ 

s O
Qr

s 
r 

M
-I 

)!~
. 

F
ig

. 
1

2
. 

S
y

m
m

et
ri

za
ti

o
n

 
w

h
ic

h
 

ca
u

se
s 

a 
se

m
ib

u
b

b
le

 
to

 b
e 

re
d

u
ce

d
 

to
 a

 
q

u
an

tu
m

 
st

at
is

ti
ca

l 
b

u
b

b
le

. 

>
 

3
~

 
4! 

A1
23

4 -
 2

! #
~0

23
8Q

13
2! ~ 

34
] 

u 

>
 

F
ig

. 
13

. 
E

x
am

p
le

 
o

f 
a 

q
u

an
tu

m
 

st
at

is
ti

ca
l 

sk
el

et
o

n
 

fr
ag

m
en

t 
o

b
ta

in
ed

 
fr

o
m

 
a 

re
d

u
ci

b
le

 
cl

u
st

er
 

h
av

in
g

 
a 

se
m

ib
u

b
b

le
. 

-4
 

O
 

O
 

,-h
 

< O
" 

tD
 

"O
 

o t~
 

5"
 

Z
 

0 ..~
 

t-
 

o"
 

c 3 O
 

c c 3 3 O
 



404 Tomio Yamakoshi Petrosky 

bubble, it is enough to notice that only a part of the symmetrization in Fig. 12 
causes the semibubble to reduce to the quantum statistical bubble. There, the 
subscript M - s on 6 P means the set of particles constructing the semibubble 
except for particle s. I f  in the above rule for the symmetrization for a cluster 
with bubbles we replace the partial symmetrization of the bubble with the 
symmetrization in Fig. 12, we get the rule for obtaining a quantum statistical 
skeleton fragment from a cluster with semibubbles. For example, corre- 
sponding to Fig. 10c, we get the quantum statistical skeleton fragment as 
shown in Fig. 13, where 2! Se2aOQ13 appears instead of "~! 5a~2 in Fig. 10c. 

As a consequence of the above procedures (i)-(iv), the quantum statistical 
collision s.operator of the generalized master equation (2.1) can be obtained. 

3. A P P L I C A T I O N S  

We now apply our analysis to the derivation of the kinetic equation for 
the one-particle momentum distribution function for a simple system in which 
two- and three-particle collisions cannot be neglected. The general equation 
can be obtained from the reduction of (2.1) as 

= t )  + h Jo (h3c) 

T 

• ~ ~ (pr; prlx~r,(,)lp,r; P'~)r-I ~.E(P~, t - ,) 
p r -  1 p , r  i = 0 

(3.1) 

with 

f bco 
~(p, ,  t) = dE~z,E(p~, t) (3.2) 

Here the reduction (hag)-1)~r-1 ~ - 1  except for the fixed particle 1 has been 
performed, and the (r) on hE and XE' means that the quantities are related to r 
particles; c is the concentration of the system. 

Let us first consider the simplest case, corresponding to two-particle 
collision. The quantum statistical one-sided skeleton fragment for this case 
is shown in Fig. 14. From this diagram, we can easily obtain the two-sided 
diagonal fragment by using the compensative relation. Then, the two-particle 
collision s.operator is as given by Fig. 15. In this simplest case, neither 
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external contractions nor bubbles and inactivated one-sided diagonal frag- 
ments appear. The right side in Fig. 15 can be expressed in terms of the 
two-particle T-matrix defined by the equation 

1 
T~2(E, l) = VI2 - Vz2 HO2 _ E - (//2) T~2(E, l) (3.3) 

where H~ is the unperturbed two-particle Hamiltonian and 

(P,, PJl E.JIp,', p/) = ~-~ ~ ,Xv(q) ,SK(p, - p,' + hq) 3~:(pj - p / -  hq) (3.4) 
q 

Then, the gain part of the two-particle s.operator is 

(p~; p~[ ex~)( t )~ ' (Z)Ip '=;  p'2) 

= 2l (Ep 1 _ 1 ) 
- E -  (l/2) Ep2 - E + (l/2) 

' ' ' T  E • (Pl,p2]T12(E, l)5~2[p~',p2)(p~_,p2 ] 12( , -I)[Pl',P~') (3.5) 

and the loss part is 

(p2; p,~l fr ip2; p2) = 2! ( p l ,  p2 ] [T12(E, l) - I"12(E, -/)]5P~2 ]pl, p2) 

By using the identity 

(3.6) 

~-I  - ' =  ~ - A ~ ) A j ,  Ao A,~+I At As A~(A~ ' ' for = ' = 1 
t = 1  j = l  k = l  t = 1 ] = / r  

(3.7) 

we can rewrite the loss part as 

(p2; p21 ~)(l)[p2; p2) 

155, ' ' = 2 ! ~ ( P ~ , P 2 I T ~ ( E ,  ) z2[P~,P2) 
DI* P2* 

( , ( p ; ,  p2'IT~(E, - / ) IP~,  P=) Ep,= - E - (l/2) x 
1 ) 

Ep,= - E + (//2) 

(3.8) 

where the symmetrization operator Se~2 has been moved into the left T-matrix. 
The calculation with the identity (3.7) can be performed by using the dia- 

grammatic method in a way similar to the method based on the compensa- 
tive relation discussed in Section 3 of I. That is, to reformulate the loss part, 
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we first draw a one-sided diagonal fragment, such as the example in Fig. 16a. 
Next, the innermost potential is transferred to the opposite innermost side 
[diagram (b)]. The third diagram (c) is obtained from the second by a similar 
transfer of the innermost potential on the left side of  the A line. The successive 
transfers are continued until we obtain diagram (e) on the opposite side of the 
original one. Then, the first and the last diagrams (a) and (e) correspond to 
the expression in (3.6), while the intermediate diagrams (b)-(d) correspond to 
(3.8). This diagrammatic relation holds for any diagrams of the loss part, 
including an arbitrary number of colliding particles. 

It is worthwhile noting that if we are interested in the asymptotic kinetic 
equation, the integration over E can be performed for the simplest case of  
ct = finite in the limit t -+ 0% and the equation for q~l(pl, t) can be obtained: 
Namely, as has been discussed in I, the asymptotic kinetic equation is given by 

ih c3#~,E(pl, t) 

= 2= dr Z (h3c)  (pr; p,r) 

T 

x 1--[ q~l,z(P~, t - r) (3.9) 
i = O  

and this is a direct result from the solution for po,~(lp~; t), 

po,~([pS; t) 

1 )m 
= 27r-'--~p~Nm~__o~-~. ~ + ~ (pN;p~I[xEm(I)AE(I)orAE(I)2Em(I)] 

= ]p,N; p,N)p0([pN ; 0)]z= +,o (3.10) 

where the destruction part has been omitted for simplicity (see Appendix B 
in I). In the simplest case with only two-particle collision, the differential term 
with respect to l in (3.10) can be neglected. This implies that the contribution 
of a collision which started at some previous time on the right-hand side of 
(3.9) can be neglected, i.e., 

ih[~,~l,~(p~, t)y 2) 

27r dr h3c ~ ~ ~ (.p2; p2Ix~2)(.r)[p,2 ; ,2 ' t ' = - -  p ) ~ I , E ( P l ,  ) ~ , ~ ( p ~ ,  t)  
P2 P1 '  P2 '  

2 .  t t = h 3c ~ ~ ~ (P , P2]X~)(+iO)[P'2; P'2)~I,E(Pl', )~I,E(P2, t) (3.11) 
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For such a case, we have 

p0,E(jpU; t) = 3(E - Ep,,)p0(lpN; t) (3.12) 

from (3.10). Then, substituting (3.12), (3.5), and (3.8) into (3.10, and 
integrating over E, we find the asymptotic kinetic equation, 

[ ,41(pl, 0]  ̀2, 

= 2!  2rrhac ' ' 

P2 PI' P2 e 

x (p ( ,  p2'[T~2(EpI.p~)[p~,  P2) 8(Era + Eo 2 - Epl ,  - Ep2,) 

x [~1(p1', t)6Jp2',  t) - $I(P~, t)$~(p2, t)] (3.13) 

where the argument + i0 in the T-matrix is omitted for simplicity and the 
dagger (*) means the Hermite conjugate of the operator. 

As a second example we consider three-particle collisions. The basic 
unsymmetrized clusters were already shown in Fig. 5. Following the rule for 
symmetrization given in the previous section, we get the quantum statistical 
one-sided skeleton fragments shown in Fig. 17, where ~,bc':(3> -,,,~~ ~-sbc:(3~ are partial 
symmetrization operators for diagrams having a bubble and a semibubble, 
and are defined by 

3! 6:~ a~ = 3! SP12a - 2! S#2a, 3! ~'sbc:(a> = 3! ~2a  - 2! O Q 1 2 ~ a  (3.14) 

Then, by using the compensative relation, we obtain the two-sided skeleton 
fragments shown in Fig. 18. For the three-particle collision, we have in 
addition diagonal fragments having a bubble, or an inactivated diagonal 
fragment, or an external contraction. Such one-sided and two-sided fragments 
are shown in Figs. 19a and 19b, respectively. 

The corresponding expression can be written down explicitly by using the 
two-particle T-matrix (3.3) and the three-particle T-matrix defined by 

s 3 1 T<8)(E, l )  (3.15) T'3'(E, t) = - v , , / r  E -  (lI2) 
~<.Y t < J  123 -- 

where H~ is the three-particle unperturbed Hamiltonian. 
We give here the kinetic equation for the interesting situation in which 

the collision time t~ can be regarded as being instantaneous as compared with 
the relaxation time t,. For such a system, not only the terms differentiated 
with respect to l, but also the terms having bubbles or inactivated diagonal 
fragments can be neglected in (3.10). This implies that (3.12) again holds. Then, 
writing down the expression corresponding to the diagrams in Figs. 17-19 and 
reformulating the loss part with the identity (3.7) by the aid of  the diagrammatic 
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method,  and further moving the symmetrization operators into the left-hand 
T-matrices, we get the contribution of  the three-particle collisions 

[~tr t)] (a) 

= 3 ! 2~'(h~c)2 g '  - T(3)5~, - ' 
D2 P8 D1 ~ P2 ~ D8 ~ 

x <p/ ,  P2', Pa'IT~(g)*IP~, P2, Pa> 

+ ~ [<P~,P2,Ps]T2a ~23]P~,P2,P3'> 
P ( t 2 3 )  

• <m', p ; ,  P~'fT~?*IP~, P~, P~> + c.c.] 

" T R(3>rT, A "r T ~a>~l.  , , , ,  + ~ (P l ,P2 ,v3  12 o t 23 b -}- 13 s b ) t l ' l , l ' 2 , P 3 ' >  
P ( 1 2 3 )  

x ( p / ,  P2', " ' IT* D~3)*Tt I.. v31 23-,o ~121w,P2,P3> 

- ~ [<p~, p~,  p3[(1 - -i" ~,<3~-r ~,~3~r~, ~<~ 
I 23z ,~0 / ~  1 2 1 ~ 0  \~ 23  b 

P ( 1 2 8 )  

(3) , ' ' ' + T~J~,)[pI, p~, p3 ><o~, p~, p3'IT~3IP~, p~, p3> + c.c.]} 

x ~(Epl + Ep= + Zp3 - E .~ , -  Epr - E.3, ) 

• [r t)r t)r t) - r t ) r  t)r t)] 

+ 2 ! 2zrh3c S '  
~ ~ ~ {<P~, p 2 1 T ~ = I p ~ ,  pz'><p/, p='ITI=Ipl, p~> 
P2 P ] '  D2" 

x 3(Ep~ + E,2  - E m, - Ev~,){r t)r t )Ohac[r t )  

+ r t)] - r t)r t )Oh3c[r  t )  + Cz(p2', t)]} 

- p IT 21p ", p ; ' >  
PI" P2" 

l 
• E~c..,=- - s - io ~162 ~) + r 0] 

• <p/', p;'[T~Z~]p/, p;><p/, p;[Tl2]p~, p~> + c.c.} 

x 3(Z,~ + Ep~ - E,, c - Epr162 t)r t) 

- ~b~(p~, t ) r  t ) ]}  (3 .16 )  

where 

R(o a~ = 1 / (H%3 - E,,i,,,~,p 3 - iO) (3.17) 

~a) i0) and Tij T~j(Ep, pj, + iO)  and the abbreviations T~(~ ~ - T# (Epl,,,~,p3, + = , 
have been used. 



412 Tomio Yamakoshi Petrosky 

4. D I S C U S S I O N  

Expression (3.16) shows that the symmetrized collision terms containing 
three particles are classified into two groups: One group is made up of the 
first part of (3.16), corresponding to Figs. 17 and 18, and describes essentially 
three-particle collisions. We have succeeded in the symmetrization of this type 
of interaction through our contracting procedure on the basis of the unsym- 
metrized three-particle collision s.operator. The other group is made up of the 
second part of (3.16), corresponding to Fig. 19, and describes the symmetry 
effect on the initial and final states in the two-particle collision, i.e., the 
Uehling-Uhlenbeck term (the first term in this part), and on the intermediate 
states in this collision (the second term in this part), which was first derived by 
Prigogine and R6sibois/4> These terms have been obtained merely by putting 
an external contraction on the two-particle collision s.operator. 

The order of magnitude of these terms has been discussed for the 
unsymmetrized three-particle collision by R6sibois ~2~ and for the intermediate 
statistical effect by Prigogine and R6sibois/4~ For the case of AB ~> a (where 
AB is the de Broglie wavelength and a is the molecular length), their estima- 
tions still hold for our symmetrized terms, since for such a case the exchange 
collision may give a contribution of the same order as the direct collision. 
Thus, following their estimation, we have 

P i m m  ,,, AB aSc, P~nm ,,, a A 3c (4.1) 
P~,n a Pi~,zi AB 

for the first part of (3.16), and 

PII,U ~ ABar PII,E ~ a 
PII,II PII,II ~ ABSc (4.2) 

for the second part of (3.16). Here, P~,~ is a typical magnitude of the contri- 
bution from the two-particle collision in (3.13), Pm,z~z is that from the three- 
particle collision in which three particles appear on both sides of the A line, 
as in the first diagram in Fig. 18, and Pzi,~ is that in which two and three 
particles appear on each side of the A line, respectively, as in the second 
diagram in Fig. 18. Further, P~Lu is the contribution from the Uehling- 
Uhlenbeck term, as in the second diagram with external contraction in Fig. 
19b, and P~z,E is that from the two-particle collision with external contraction 
in the intermediate state, as in the last diagram in Fig. 19b. Thus, for the case 

A~ < a < c -1fa (4.3) 

the real three-particle collision is the most important, the terms Pi~,~z~ and 
Pu,E give the first correction terms, and the Uehling-Uhlenbeck term is the 
smallest one. In contrast, for the case 

a < c -1/8 < A8 (4.4) 
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Fig. 20. Diagrams containing the same pattern of an interaction. 

the situation is reversed, namely, the dominant term is now the Uehling- 
Uhlenbeck term and the smallest term is P m , m .  

Finally, we mention why we have symmetrized the collision s.operator 
on the basis of the cluster expansion rather than by constructing effective 
vertices by incorporating the quantum statistical effect into a single potential 
such as in our previous work (15~ or in Balescu's work/6~ The reason is most 
easily seen by using the diagrams in Fig. 20, where diagrams (a) and (b) 
contain the same pattern of the interaction (d). However, it is more natural 
to incorporate the effect of the symmetrization in (b) into the outside inter- 
action as in (c). This shows that this type of contraction cannot be classified 
into a single pattern. Hence, it is more appropriate to classify the effect of the 
symmetrization on the basis of  the cluster expansion. Furthermore, it must 
be remarked that our method based on this idea seems to be closely related 
to the quantum statistical equilibrium theory given by Lee and Yang. (1~ 
A detailed study of this relationship will be presented separately. 
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